Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## catena-Poly[[(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$ )cobalt(II)]- $\mu$ -malonato- $\kappa^4 O^1, O^{1'}: O^3, O^{3'}$ ]

#### Ling-Feng Qiu, Bai-Lu Zhou and Wei Xu\*

Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: xuwei@nbu.edu.cn

Received 11 September 2010; accepted 23 September 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.127; data-to-parameter ratio = 14.9.

In the title compound,  $[Co(C_3H_2O_4)(C_{14}H_{12}N_2)]_n$ , the Co<sup>II</sup> ion is in a distorted octahedral coordination being chelated by a 2,9-dimethyl-1,10-phenanthroline molecule (dmphen) and two carboxylate groups of two malonate ligands The malonate ligand acts in a bridging mode, forming coordination chains along [100].  $\pi$ - $\pi$  stacking interactions between dmphen ligands [interplanar distances = 3.414 (4) and 3.447 (4) Å] organize the coordination polymers into supramolecular double chains.

#### **Related literature**

For coordination polymers with dicarboxylate ligands, see: Rao et al. (2004); Zheng et al. (2004).



#### Experimental

Crystal data [Co(C<sub>3</sub>H<sub>2</sub>O<sub>4</sub>)(C<sub>14</sub>H<sub>12</sub>N<sub>2</sub>)]

 $M_r = 369.23$ 

| Triclinic, $P\overline{1}$     | V = 729.4 (2) Å <sup>3</sup>              |
|--------------------------------|-------------------------------------------|
| a = 6.8767 (14)  Å             | Z = 2                                     |
| b = 9.5293 (19)  Å             | Mo $K\alpha$ radiation                    |
| c = 11.149 (2) Å               | $\mu = 1.20 \text{ mm}^{-1}$              |
| $\alpha = 86.83 \ (3)^{\circ}$ | T = 295  K                                |
| $\beta = 89.53 \ (3)^{\circ}$  | $0.33 \times 0.11 \times 0.07 \text{ mm}$ |
| $\gamma = 89.52 \ (3)^{\circ}$ |                                           |
| ,                              |                                           |
| Data collection                |                                           |

| Rigaku R-AXIS RAPID                  | 7245 measured reflections              |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 3309 independent reflections           |
| Absorption correction: multi-scan    | 2590 reflections with $I > 2\sigma(I)$ |
| (ABSCOR; Higashi, 1995)              | $R_{\rm int} = 0.032$                  |
| $T_{\min} = 0.653, T_{\max} = 0.782$ |                                        |
|                                      |                                        |

# Refinement $R[F^2 > 2\sigma(F^2)] = 0.048$ 222 parameters $wR(F^2) = 0.127$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.58 \text{ e } \text{Å}^{-3}$ 3309 reflections $\Delta \rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$

# Table 1 Selected bond lengths (Å).

| Co1-01              | 2.180 (3) | $Co1-O4^{i}$ | 2,126 (4) |
|---------------------|-----------|--------------|-----------|
| Co1-O2              | 2.145 (3) | Co1-N1       | 2.122 (3) |
| Co1-O3 <sup>i</sup> | 2.229 (3) | Co1-N2       | 2.103 (3) |

Symmetry code: (i) x - 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University and the Scientific Research Fund of Ningbo University (grant No. XYL09078).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2299).

#### References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2004). Inorg. Chem. 43, 2590-2596.

supplementary materials

Acta Cryst. (2010). E66, m1327 [doi:10.1107/S1600536810038043]

## *catena*-Poly[[(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$ )cobalt(II)]- $\mu$ -malonato- $\kappa^4 O^1, O^1': O^3, O^3'$ ]

#### L.-F. Qiu, B.-L. Zhou and W. Xu

#### Comment

Metal-phenanthroline complexes and their derivatives have attracted much attention because of their peculiar features. In turn dicarboxylate ligands play an important role in modern coordination chemistry and many complexes have been published with them as ligands (Rao *et al.*, 2004; Zheng *et al.*, 2004). The title complex, (I), was recently prepared and its crystal structure is reported here.

The crystal structure of the title compound consists of  $[Co(C_{14}H_{12}N_2)(C_3H_2O_4)]_n$  chains (Fig. 1). Each Co atom is surrounded by two nitrogen atoms of one 2,9-dimethyl-1,10-phenanthroline ligand and four oxygen atoms of two bis-chelating malonate anions to complete a seriously distorted octahedral coordination (Table 1). The malonate ligands bridge the Co atoms to form neutral one-dimensional chains  $[Co(C_{14}H_{12}N_2)(C_3H_2O_4)]_n$  along [100] with parallel orientated phen ligands at the same side. As shown in Fig. 2, through  $\pi$ - $\pi$  stacking interactions the dmphen ligands of two adjacent coordination chains form supramolecular double chains. The interplanar distances between the neighbouring dmphen ligands are 3.414 (4) and 3.447 (4) Å.

#### **Experimental**

Addition of 2.0 ml (1 M) NaOH to an aqueous solution of CoCl<sub>2</sub>.6H<sub>2</sub>O (0.238 g, 1.00 mmol) in 10.0 ml H<sub>2</sub>O produced

a pink precipitate, which was centrifugated and washed with doubly destilled water for several times until no Cl<sup>-</sup> anions were detectable. The fresh precipitate was then added to a stirred solution of malonic acid (0.104 g, 1.00 mmol) and 2,9-dimethyl-1,10-phenanthroline hydrate (0.226 g, 1 mmol) in CH<sub>3</sub>OH/H<sub>2</sub>O (1:1 30 ml). The red mixture was allowed to stand at room temperature and after several days, red plate-like crystals suitable for X-ray analysis were formed. grown by slow evaporation.

#### Refinement

All H atoms were placed in geometrically calculated position (C-H = 0.93-0.97 Å) and refined in a riding model approximation with  $U_{iso}(H) = 1.2 U_{eq}(C)$ .

#### **Figures**



Fig. 1. *ORTEP* view of the title compound. The displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) x - 1, y, z; (ii) x + 1, y, z].



Fig. 2. A double chain formed through  $\pi$ - $\pi$  stacking interactions between dmphen ligands.

## *catena*-Poly[[(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$ )cobalt(II)]- $\mu$ -malonato- $\kappa^4 O^1, O^{1'}: O^3, O^{3'}$ ]

Z = 2

F(000) = 378 $D_{\rm x} = 1.681 \text{ Mg m}^{-3}$ 

 $\theta = 3.5-27.5^{\circ}$   $\mu = 1.20 \text{ mm}^{-1}$  T = 295 KPlate, red

 $0.33 \times 0.11 \times 0.07 \text{ mm}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 5667 reflections

| Crystal data                                                                                         |
|------------------------------------------------------------------------------------------------------|
| [Co(C <sub>3</sub> H <sub>2</sub> O <sub>4</sub> )(C <sub>14</sub> H <sub>12</sub> N <sub>2</sub> )] |
| $M_r = 369.23$                                                                                       |
| Triclinic, $P\overline{1}$                                                                           |
| Hall symbol: -P 1                                                                                    |
| <i>a</i> = 6.8767 (14) Å                                                                             |
| <i>b</i> = 9.5293 (19) Å                                                                             |
| c = 11.149 (2)  Å                                                                                    |
| $\alpha = 86.83 \ (3)^{\circ}$                                                                       |
| $\beta = 89.53 \ (3)^{\circ}$                                                                        |
| γ = 89.52 (3)°                                                                                       |
| $V = 729.4 (2) \text{ Å}^3$                                                                          |

#### Data collection

| Rigaku R-AXIS RAPID<br>diffractometer                                 | 3309 independent reflections                                              |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                              | 2590 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                              | $R_{\rm int} = 0.032$                                                     |
| Detector resolution: 0 pixels mm <sup>-1</sup>                        | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ |
| ω scans                                                               | $h = -8 \rightarrow 8$                                                    |
| Absorption correction: multi-scan<br>( <i>ABSCOR</i> ; Higashi, 1995) | $k = -12 \rightarrow 12$                                                  |
| $T_{\min} = 0.653, T_{\max} = 0.782$                                  | $l = -14 \rightarrow 14$                                                  |
| 7245 measured reflections                                             |                                                                           |
|                                                                       |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.048$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.127$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.06                 | $w = 1/[\sigma^2(F_0^2) + (0.0568P)^2 + 0.8449P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 3309 reflections                | $(\Delta/\sigma)_{\rm max} = 0.015$                                                 |
| 222 parameters                  | $\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$                           |

0 restraints

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|-------------|-------------|---------------------------|
| Co1  | 0.23932 (7) | 0.27775 (5) | 0.73432 (4) | 0.03063 (16)              |
| N1   | 0.2539 (4)  | 0.0677 (3)  | 0.6805 (2)  | 0.0283 (6)                |
| N2   | 0.2379 (4)  | 0.1661 (3)  | 0.9024 (2)  | 0.0264 (5)                |
| C1   | 0.2526 (5)  | 0.0223 (4)  | 0.5691 (3)  | 0.0346 (7)                |
| C2   | 0.2653 (5)  | -0.1224 (4) | 0.5494 (4)  | 0.0435 (9)                |
| H2A  | 0.2659      | -0.1521     | 0.4713      | 0.052*                    |
| C3   | 0.2765 (5)  | -0.2181 (4) | 0.6433 (4)  | 0.0439 (9)                |
| H3A  | 0.2860      | -0.3133     | 0.6297      | 0.053*                    |
| C4   | 0.2737 (5)  | -0.1737 (3) | 0.7614 (3)  | 0.0347 (7)                |
| C5   | 0.2824 (5)  | -0.2671 (4) | 0.8659 (4)  | 0.0437 (9)                |
| H5A  | 0.2923      | -0.3633     | 0.8571      | 0.052*                    |
| C6   | 0.2766 (5)  | -0.2182 (4) | 0.9773 (4)  | 0.0413 (9)                |
| H6A  | 0.2831      | -0.2812     | 1.0439      | 0.050*                    |
| C7   | 0.2604 (5)  | -0.0702 (3) | 0.9941 (3)  | 0.0322 (7)                |
| C8   | 0.2485 (5)  | -0.0137 (4) | 1.1072 (3)  | 0.0396 (8)                |
| H8A  | 0.2515      | -0.0724     | 1.1766      | 0.048*                    |
| C9   | 0.2326 (5)  | 0.1280 (4)  | 1.1146 (3)  | 0.0382 (8)                |
| H9A  | 0.2249      | 0.1660      | 1.1896      | 0.046*                    |
| C10  | 0.2276 (5)  | 0.2173 (3)  | 1.0107 (3)  | 0.0312 (7)                |
| C11  | 0.2530 (4)  | 0.0242 (3)  | 0.8937 (3)  | 0.0266 (6)                |
| C12  | 0.2620 (4)  | -0.0274 (3) | 0.7747 (3)  | 0.0281 (7)                |
| C13  | 0.2325 (6)  | 0.1281 (5)  | 0.4669 (3)  | 0.0461 (9)                |
| H13A | 0.1190      | 0.1850      | 0.4789      | 0.069*                    |
| H13B | 0.2202      | 0.0809      | 0.3935      | 0.069*                    |
| H13C | 0.3455      | 0.1867      | 0.4623      | 0.069*                    |
| C14  | 0.2121 (6)  | 0.3725 (4)  | 1.0190 (3)  | 0.0424 (9)                |
| H14A | 0.3391      | 0.4104      | 1.0304      | 0.064*                    |
| H14B | 0.1298      | 0.3933      | 1.0858      | 0.064*                    |
| H14C | 0.1574      | 0.4137      | 0.9462      | 0.064*                    |
| 01   | 0.4924 (4)  | 0.3945 (4)  | 0.7882 (3)  | 0.0622 (9)                |
| 02   | 0.4560 (5)  | 0.3466 (4)  | 0.6052 (3)  | 0.0675 (9)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| O3   | 0.9214 (4) | 0.2696 (3) | 0.6983 (3) | 0.0646 (9)  |
|------|------------|------------|------------|-------------|
| O4   | 1.0687 (5) | 0.4640 (4) | 0.7095 (5) | 0.0950 (15) |
| C15  | 0.5528 (5) | 0.4017 (3) | 0.6837 (3) | 0.0331 (7)  |
| C16  | 0.7380 (5) | 0.4791 (4) | 0.6502 (3) | 0.0360 (8)  |
| H16A | 0.7421     | 0.4975     | 0.5638     | 0.043*      |
| H16C | 0.7359     | 0.5691     | 0.6869     | 0.043*      |
| C17  | 0.9200 (5) | 0.3999 (4) | 0.6886 (3) | 0.0343 (7)  |
|      |            |            |            |             |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|-------------|-------------|-------------|---------------|---------------|--------------|
| Co1 | 0.0319 (2)  | 0.0274 (2)  | 0.0321 (3)  | -0.00231 (17) | -0.00176 (17) | 0.00297 (17) |
| N1  | 0.0266 (13) | 0.0290 (13) | 0.0292 (14) | -0.0007 (11)  | 0.0004 (11)   | -0.0026 (11) |
| N2  | 0.0265 (13) | 0.0237 (12) | 0.0289 (14) | -0.0015 (10)  | -0.0022 (10)  | -0.0008 (10) |
| C1  | 0.0240 (15) | 0.045 (2)   | 0.0350 (18) | -0.0042 (14)  | 0.0005 (13)   | -0.0083 (15) |
| C2  | 0.040 (2)   | 0.052 (2)   | 0.040 (2)   | -0.0062 (17)  | 0.0002 (16)   | -0.0192 (18) |
| C3  | 0.0363 (19) | 0.0362 (19) | 0.061 (3)   | -0.0042 (16)  | -0.0004 (17)  | -0.0184 (18) |
| C4  | 0.0284 (16) | 0.0271 (16) | 0.049 (2)   | -0.0028 (13)  | 0.0011 (15)   | -0.0025 (15) |
| C5  | 0.0397 (19) | 0.0227 (16) | 0.068 (3)   | -0.0011 (15)  | -0.0021 (18)  | 0.0024 (16)  |
| C6  | 0.0390 (19) | 0.0301 (18) | 0.053 (2)   | -0.0029 (15)  | -0.0025 (17)  | 0.0164 (16)  |
| C7  | 0.0245 (15) | 0.0318 (17) | 0.0393 (19) | -0.0044 (13)  | -0.0043 (13)  | 0.0089 (14)  |
| C8  | 0.0374 (18) | 0.047 (2)   | 0.0331 (19) | -0.0060 (16)  | -0.0018 (15)  | 0.0127 (16)  |
| C9  | 0.0413 (19) | 0.050 (2)   | 0.0238 (17) | -0.0036 (16)  | -0.0022 (14)  | -0.0013 (15) |
| C10 | 0.0293 (16) | 0.0340 (17) | 0.0303 (17) | -0.0014 (14)  | -0.0010 (13)  | -0.0011 (13) |
| C11 | 0.0210 (14) | 0.0272 (15) | 0.0314 (17) | -0.0034 (12)  | -0.0024 (12)  | 0.0022 (12)  |
| C12 | 0.0223 (14) | 0.0261 (15) | 0.0360 (18) | -0.0014 (12)  | 0.0002 (12)   | -0.0006 (13) |
| C13 | 0.046 (2)   | 0.064 (3)   | 0.0282 (19) | -0.0095 (19)  | -0.0032 (16)  | -0.0023 (17) |
| C14 | 0.052 (2)   | 0.0385 (19) | 0.037 (2)   | 0.0000 (17)   | 0.0006 (17)   | -0.0080 (16) |
| 01  | 0.0481 (16) | 0.097 (3)   | 0.0412 (17) | -0.0195 (17)  | 0.0000 (13)   | 0.0045 (16)  |
| O2  | 0.063 (2)   | 0.083 (2)   | 0.059 (2)   | -0.0335 (18)  | 0.0073 (16)   | -0.0249 (18) |
| O3  | 0.0481 (17) | 0.0449 (17) | 0.101 (3)   | 0.0117 (14)   | -0.0200 (17)  | -0.0033 (17) |
| O4  | 0.0404 (17) | 0.059 (2)   | 0.183 (5)   | -0.0152 (16)  | -0.040 (2)    | 0.027 (2)    |
| C15 | 0.0266 (15) | 0.0300 (16) | 0.042 (2)   | 0.0048 (13)   | -0.0038 (14)  | 0.0032 (14)  |
| C16 | 0.0349 (17) | 0.0307 (17) | 0.042 (2)   | -0.0006 (14)  | -0.0031 (15)  | 0.0068 (14)  |
| C17 | 0.0327 (17) | 0.0369 (18) | 0.0327 (18) | 0.0018 (15)   | -0.0001 (14)  | 0.0021 (14)  |

Geometric parameters (Å, °)

| Co1—O1               | 2.180 (3) | С7—С8    | 1.400 (5) |
|----------------------|-----------|----------|-----------|
| Co1—O2               | 2.145 (3) | C8—C9    | 1.361 (5) |
| Co1—O3 <sup>i</sup>  | 2.229 (3) | C8—H8A   | 0.9300    |
| Co1—O4 <sup>i</sup>  | 2.126 (4) | C9—C10   | 1.399 (5) |
| Co1—N1               | 2.122 (3) | С9—Н9А   | 0.9300    |
| Co1—N2               | 2.103 (3) | C10-C14  | 1.489 (5) |
| Co1—C15              | 2.512 (4) | C11—C12  | 1.440 (5) |
| Co1—C17 <sup>i</sup> | 2.519 (3) | C13—H13A | 0.9600    |
| N1—C1                | 1.338 (4) | С13—Н13В | 0.9600    |
| N1—C12               | 1.350 (4) | С13—Н13С | 0.9600    |
|                      |           |          |           |

| N2—C10                               | 1.328 (4)   | C14—H14A              | 0.9600    |
|--------------------------------------|-------------|-----------------------|-----------|
| N2—C11                               | 1.364 (4)   | C14—H14B              | 0.9600    |
| C1—C2                                | 1.410 (5)   | C14—H14C              | 0.9600    |
| C1—C13                               | 1.485 (5)   | O1—C15                | 1.233 (4) |
| C2—C3                                | 1.352 (6)   | O2—C15                | 1.246 (5) |
| C2—H2A                               | 0.9300      | O3—C17                | 1.240 (4) |
| C3—C4                                | 1.405 (5)   | O3—Co1 <sup>ii</sup>  | 2.229 (3) |
| С3—НЗА                               | 0.9300      | O4—C17                | 1.226 (5) |
| C4—C12                               | 1.411 (4)   | O4—Co1 <sup>ii</sup>  | 2.126 (4) |
| C4—C5                                | 1.428 (5)   | C15—C16               | 1.511 (5) |
| C5—C6                                | 1.350 (6)   | C16—C17               | 1.509 (5) |
| С5—Н5А                               | 0.9300      | C16—H16A              | 0.9700    |
| C6—C7                                | 1.436 (5)   | C16—H16C              | 0.9700    |
| С6—Н6А                               | 0.9300      | C17—Co1 <sup>ii</sup> | 2.519 (3) |
| C7—C11                               | 1.398 (4)   |                       |           |
| N2—Co1—N1                            | 79.24 (10)  | С9—С8—Н8А             | 120.3     |
| N2—Co1—O4 <sup>i</sup>               | 119.53 (16) | С7—С8—Н8А             | 120.3     |
| N1—Co1—O4 <sup>i</sup>               | 140.97 (13) | C8—C9—C10             | 120.8 (3) |
| N2—Co1—O2                            | 136.06 (13) | С8—С9—Н9А             | 119.6     |
| N1—Co1—O2                            | 92.45 (12)  | С10—С9—Н9А            | 119.6     |
| O4 <sup>i</sup> —Co1—O2              | 93.90 (16)  | N2—C10—C9             | 120.9 (3) |
| N2—Co1—O1                            | 89.80 (11)  | N2                    | 118.4 (3) |
| N1—Co1—O1                            | 123.50 (12) | C9—C10—C14            | 120.7 (3) |
| O4 <sup>i</sup> —Co1—O1              | 92.30 (13)  | N2—C11—C7             | 122.8 (3) |
| O2—Co1—O1                            | 59.10 (12)  | N2-C11-C12            | 117.3 (3) |
| N2—Co1—O3 <sup>i</sup>               | 97.95 (12)  | C7—C11—C12            | 119.9 (3) |
| N1—Co1—O3 <sup>i</sup>               | 86.71 (11)  | N1—C12—C4             | 123.0 (3) |
| O4 <sup>i</sup> —Co1—O3 <sup>i</sup> | 58.47 (12)  | N1—C12—C11            | 117.8 (3) |
| O2—Co1—O3 <sup>i</sup>               | 124.82 (14) | C4—C12—C11            | 119.2 (3) |
| O1—Co1—O3 <sup>i</sup>               | 149.76 (13) | C1—C13—H13A           | 109.5     |
| C1—N1—C12                            | 119.0 (3)   | C1—C13—H13B           | 109.5     |
| C1—N1—Co1                            | 128.3 (2)   | H13A—C13—H13B         | 109.5     |
| C12—N1—Co1                           | 112.6 (2)   | C1—C13—H13C           | 109.5     |
| C10—N2—C11                           | 118.9 (3)   | H13A—C13—H13C         | 109.5     |
| C10—N2—Co1                           | 128.1 (2)   | H13B—C13—H13C         | 109.5     |
| C11—N2—Co1                           | 113.0 (2)   | C10—C14—H14A          | 109.5     |
| N1—C1—C2                             | 120.9 (3)   | C10—C14—H14B          | 109.5     |
| N1—C1—C13                            | 118.2 (3)   | H14A—C14—H14B         | 109.5     |
| C2—C1—C13                            | 120.9 (3)   | C10—C14—H14C          | 109.5     |
| C3—C2—C1                             | 120.4 (3)   | H14A—C14—H14C         | 109.5     |
| C3—C2—H2A                            | 119.8       | H14B—C14—H14C         | 109.5     |
| C1—C2—H2A                            | 119.8       | C15—O1—Co1            | 90.4 (2)  |
| C2—C3—C4                             | 120.0 (3)   | C15—O2—Co1            | 91.7 (2)  |
| С2—С3—НЗА                            | 120.0       | O1—C15—O2             | 118.8 (3) |
| С4—С3—НЗА                            | 120.0       | O1—C15—C16            | 120.9 (3) |
| C3—C4—C12                            | 116.7 (3)   | O2—C15—C16            | 120.3 (3) |

# supplementary materials

| C3—C4—C5  | 123.9 (3) | O1-C15-Co1    | 60.2 (2)  |
|-----------|-----------|---------------|-----------|
| C12—C4—C5 | 119.4 (3) | O2-C15-Co1    | 58.6 (2)  |
| C6—C5—C4  | 121.2 (3) | C16-C15-Co1   | 178.2 (2) |
| С6—С5—Н5А | 119.4     | C17—C16—C15   | 113.5 (3) |
| C4—C5—H5A | 119.4     | C17—C16—H16A  | 108.9     |
| C5—C6—C7  | 120.8 (3) | C15-C16-H16A  | 108.9     |
| С5—С6—Н6А | 119.6     | C17—C16—H16C  | 108.9     |
| С7—С6—Н6А | 119.6     | C15-C16-H16C  | 108.9     |
| C11—C7—C8 | 117.2 (3) | H16A—C16—H16C | 107.7     |
| C11—C7—C6 | 119.4 (3) | O4—C17—O3     | 119.4 (4) |
| C8—C7—C6  | 123.4 (3) | O4—C17—C16    | 120.1 (3) |
| C9—C8—C7  | 119.4 (3) | O3—C17—C16    | 120.5 (3) |
| ~         |           |               |           |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.





Fig. 2

